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SUPERSONIC FLOW IN THE AREA OF ANTISYMMETRIC THIN CRUCIFORM WINGS WITH
SUPERSONIC LEADING EDGES IN A HORIZONTAL PLANE, WITH CONSIDERATION OF
FLOW SEPARATION ON THE EDGES
Author: Stefan Staicu
1. General Considerations

A study is made of the flow in the supersonic regime in the area of
a thin cruciform wing with an antisymmetric distribution of incident angles.
The horizontal plane has supersonic leading edges and flow separation is considered
along the subsonic leading edge line of the vertical plane.

We shall therefore consider a cruciform wing cempeosed of two simple
delta wings perpendicular to one another, and refer it to a system
of Cartesian axes Oxlxzx3 with an origin in the wing apex and with the axis

Ox1 in the direction of the unperturbed tream U_ (figure 1).
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Figure 1




Let @ be the equal incidence angles of oppesite signs along the two halves of
the horizontal wing,~t£? the incident angles for the upper part of the sheet and
113 for the lower part.

Analogous to what happens for a thin cruciform wing with complete
subsonic edges, in the present case the flow separates at the subsonic
leading edges of the sheets, producing a vortex system located on the right and
left sheets as a function of the incident anglescf‘anqjg , Wwhich produces anti-
symmetric motion.

Thus the flow is modified by the existence of two vortex apexes Situated

antisymmetrically with regard to the axis of symmetry and with the same

intensity and sign (figure 1). Below we shall denote by (-r'j t' ) the coordinates
»

for the physical plane of the vortex core under which the apex formed at the
edge of the sheet is concentrated.

Since the study of flow is becoming more and more complicated, we shall
try below to find the effects of these vortices on the wing and on the sheet.
Therefore we shall assume that the effect of flow separation at the
leading edges of the sheet and the formation of vortex cores is to create a
complex field of vertical and horizontal verlocities which will modify the flow
in such a way that the velocities are zero at the edge.

Under these considerations the flow in the area of the cruciform system
remains conical longer and can be treated using the methods of conical flow
theory for wings [1].

Proceeding as if the cruciform wing had complete subsonic edges, we
shall consider that an actual thin cruciform wing, which in a way has certain
finite velocities at the edges because of the effect of stream separation, is
equivalent, from an aerodynamic point of view, to a fictitious thin wing with a
convenient variety of incident angles (or Wvelocities of lateral perturbation).
In order to study the motion with ease, with the methed of conical motion, we

shall divide the fictitious thin wing into three component wings.
2
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1. The thin cruciform wing has antisymmetric incidence on the sheets
and is thus variable, so that there is some pressure modification and of normal
perturbation velocities on the sheet in the vicinity of the leading edge. A
fictitious thin wing is obtained with a finite velocity even at the subsonic edges
of the plates, but equal and of opposite sign on the two sides, which does not
agree with experimental findings.

2. A cruciform wing of "symmetric thickness" with equal sheet slopes
and with the same signs as the first incidents of the component wing. This
wing, combined with the first, will form a tall cruciform wing which will
have different pressures on the two halves of the sheet, somewhat approaching
the real situation.

3. A third wing will have a "symmetric thickness" with variable slope,
so that in combination with the second wing a mean slope of zero will be found,
corresponding to an actual thin wing. This wing will have the role of total
compensation for the aerodynamic effects of the second wing in the field of
normal perturbation velocities.

If we superimpose these three component fictitious wings, we shall actually
be totalling their aerodynamic effects. We obtain a cruciform wing equivalent
to a real one, but with consideration of separation on the edge.

2. Axial Perturbation Velocities

Below we shall determine the axial perturbation velocities for these three
fictitious component cruciform wings necessary to calculate the pressure
distribution on these four arms as though we were determining the aerodynamic
properties of real wings. We shall now indicate the flow variables and the
planes used.

Starting from the physical plane yOz (figure 1) for the coordinates
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Figure 2.
Starting with figure (2), the height of the sheet and the ordinate of the
core position of the vortex created at the leading edge of the sheet, x will be

given in the auxiliary plane by the following formumae:
h ; f‘.)
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From plane x we shall plot X in the complex plane (figure 3) through
suitable transformation
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? which is situated in a horizontal plane on the cruciform wing, similar
‘i to a plane delta wing. However, in order to define the axial perturbation
E | velocities in primary form, we shall apply the method of hydrodynamic

analogy in the plane )((figure 4), defined by the corresponding transformation
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Figure 4.
1. Antisymmetric Thin Cruciform Wing with Variable Incidence
As a result of the effects of these two antisymmetric vortices, the
normal perturbation velocities at the surface of the cruciform wing are
modified to correspond to a real wing, and therefore with the fictitious thin
wing defined above. We shall consider that the vertical velocity on the wing
with the supersonic edges is not modified, because of the existing vortices,
but that the lateral one on the sheet v' will have the following variations:
Ug=—PBo Ua, (4 =0, — 1, <2< 1) (7a)
v’ =0’ ()= —p () Ua, [2=0, y&(—h — L) U (RG], (7b)
such that the velocity at the sheet edges becomes
ty=—f Vw. (8)
2h represents the opening + of the sheet and to:
is a coordinate which limits the interval of variation of the lateral
velocity on the sheet.
The continual variation in velocities v' or of the respective incidence angles
corresponds to continuous distribution of elementary edges situated on the
surface within the interval under consideration, while their contributions

in the expression of axial perturbation velocity from point X in plane (6)

“111 be ! » x—-—f E
d\; = q: (x) In X=X _in— 7; dye, %)
XXt - (
Xt
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in which X: is the abscissa of the edge Stream 1{in the wake of the wing:

¢ l,+&.1:-. T"-‘zb""“- (10)

Below we shall use the source distribution on the wing q'i(",Z't) as the
most simple, corresponding to the conditions imposed by the problem on
lateral velocity v'. Thus, looking in plane X, the intensity of the source

located in the wake of the sheet will be
q:(T) -—-q.»:—. T€(—To. Ty (11)
Taking this distribution of sources into consideration and applying the
fermulae established in conical motion theory [1], the axial perturbation
velocity of the first component wing will be obtained by adding up the
contributions of all elementary distributed edges. Thus, proceeding in
plane X through transformation (6), where we determine the contribution of
the subsonic edges of the sheets and the supersonic ones of the horizontal
planes, we shall obtain the following expression
[l —& 2 fa+sD(—&xy (12)

Bk X ] et “"'.{"“{‘“‘ o a—a i

[+ &0 (1 +8X) 2 q. (™ ( ‘e {1+ BXil — &)
. U+rBL)IIr8MT e & Ot "riarech 5 At s 4. 58
o le 23(L+-8) ‘ T So gy 28 (X —T, ¢

gy -8 % L7 g
-~ arg ch l LB Eda Bsta )dT.

28X + 1)
which, as a result of calculation, becomes: (13)
FY oo @ ey — R
'u,m-’»""- l"‘ SRR K,sarc cos & L / Rl
X & x a('(l'-~ \’)
q: 127, X 1 %3"T.X)
To-— X')|arg ch- -—arg ch—" 32— A
’ ub[ B SU~To . T AT +-.
4 }} -1 — 2" X¥ arc sin nrﬂ .

Taking the equation (2) into consideration, we shall obtain the following

expression of the axial perturbation velocity for the points on the wing

(x=Yay, s=z2=0),

“l-‘""uvl =X ”‘+ Kuaru.os V“ h*) (1 — k- u)‘+

b'+‘l $= R‘bntl‘—-u) ("T‘)
e I'T — B
-+ a t e el ol 0, (S
;T)[—B;V(l — B*y*) (b* -y )arc cos I+B’l)'
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3 .,(—‘_‘4:—5!(.1'(0’ +y*) (14)
—fa 2 )
(¢ + y*) arg ch V (4 B (G oY)

but on the surface of the sheet, where we observe - that

iz
S e b i e s

hSs o ke D)

=B —“—'7-"“

ve get u,,=a,.v.;;__7. 42K,
L CF A 16)
q, Vl - B‘h’ V h* — l b3 (
+uh(l T ’)t l—-—B’h‘ T R /l-—B’lo

n*— 2?
Ip—2

‘0 . argch V ) t
1— B (“ VE-T-_——‘T) ¢
2. Cruciform , Wing of Symmetric Thickness with Slopes Equal to the Incidence
of the First Component Wing
We shall introduce the double cruciform wing with a symmetrical thicknes
plate in order to remove the accentuated pressure #PiCes on its intrados.
Proceeding in the same way as in the case of a thin wing, we shall obtain the

following expression for the axial perturbation velocity in plane X:

2 1 2 q, '- V” FR X (1 - &)
‘u,-_--“- Q,,argch ———+— - T(argch TR (X—T) 4 17)
ol +s\~\)c| — D)
dT,
argchll 2R(X+T) )
which becomes
& Ta
6%, = & Q0 arg ch —I— + -2 [-—- (To— X% (argch -~“-T——- * (18)
3 n b b & ( "la)
1+ 3T, X
h Xtar ch~—- L Ty 7 I U ' g Ty H
f’:fargc T T‘To)‘+ g i T \

The' expressions of the axial perturbation velocities in the physical plane

2 a+Bh [ 18
will be u,=—-Q, ar ch] [(l;‘*—u’) ar h]
, R By | VB g
Ty L RY<E (19)
— (% %y’)arzchv ook R : T8 (T8 - V148 to)]
BX w4+ v)
on the wing surface, and 1,,=-~2- Q, argch l*,’l -8 (20)
n B (h* —29)
_q,l—l_:.E’—E" ol ol h‘[l—[i‘:' =¥
ah(l - 1= ) B o)
- fh—2t ar chl/‘wl_:B’z‘
=B o [ Ba—
Vi -1 —B'z'

Vy — NPT
B'Hl -B h')(] B"i) —==(V) Bi Fi—-8 h)]

on the plate surface.




3. Cruciform Wing of Symmetric Thickness Compensating for Slope

We shall compensate for the effect of the wing thickness resulting from
the superposition of the first and second wings by introducing on the wing
surface a new distribution of seurces of a form which will return the
wing to a mean 3sero thickness ., Normal velocity variations on sheet v",
created by a new distribution of Origins A will correspond to a "wing
compensating for a slope' of symmetric thickness.

Taking equation (11) into consideration, we shall choose for the points

of this wing ar(t) =k, :, (~h <t h),
(21)
which in sheet X become b d (b 7 ‘
t(N=—""-V1& = p* - ~ (=0T ).
and we get the follwing expression of axial perturbation velocity
p bl "V T
ae, = - Q,,,ar; ch = b + '“ “b 18t b2 So O P (23)
FY Y -, 8T ht 1
a5 T TN B W
wv -1) 2R (X4 T) '
2 1kt Vi—apy g i i
== — ; Q,, arg ch -&;’\, 7\‘!7) l-‘ = \2 [“ -8 b Xtarg ch k\'\,' 3
— & h?
—(X*—»? h
. s [ [+

g VTR (1 - T 1 -w.\-fl-

Calculating the axial perturbation velocities on wing and sheet we get:

1By k, 1
a™=— — hV e —— e —
: Q"mc B'(h'+y")  wh|TH BTy 1By iy

| 1+ B! _ll_,__ . 1
X‘(')”f' y*) arg ch V:"(')' (1 4 8% )y’argchVB'y

+ o VT By <vr+"—a- B—1) VT:BT?} :

—B'z'
or Uep== —=— Q""‘ChVB! h'—y;)- -
— 2t | (A —2" argch __l_'____._*_ o Chv Hgl (25)
- B*(h*~ 8 B 2

+—B;;(l-—yl-— B*h*) Vl——B'-'z‘-] .




Observations
a) By superpositioning these three component wings we get a real wing for
which the axial perturbation velocity is the expression:

° =+ U +U,, (26)
which will be antisymetric to the axis of symmetry Oxl, continuous and
different from zero at origin O.

b) If we made h¥, (h?0), in the results obtained, we get the case of a
delta wing with forced antisymmetry and with supersonic leading edges.
3. Determination of Constants

We calculate the constants Q&o, 5 kt in the same way as in a plane

K10’ 9
delta wing [3, 9].

Thus, by using some conditions limiting normal perturbation velocities, we

find the constants a which appear in the expression of the axial

10 %10
perturbation velocity (13). These equations are found beginning with the

compatibility equations is
dU=—xd TV = —— —dW,

Vi —5x 27)

and considering the variations in velocity at one point on a wing or sheet,
up to a point of zero velocity at the Mach cone. Likewise in the plane delta
wing (3] we shall consider some concentrated sources at the point of their

distribution with intensity Qt and position Y-T'o given by the equations

Q: =';— ‘%’—(’)’—\W)' (28a)
which, written in the physical plane, become
L& =1 :
Q 2 b (1—BkY)(1—B ) (29a)
,;,:szn — B} —4(h*— 1)
41 —B*n)+5(1 — B 1) (29v)

as a function of to which limits the source distribution on the first thin

sheet. We shall write the following equations:




cercul Magh (1 77 - — ’
. { i SRR 2 |
Re Bg [ ‘[ l -/\ : dﬂf: £ |

Saripd ‘1“): i “.,

(30a)

ful(u' Mich
dﬂ[ =y
ph(l3 I Al . %

(Key: 1- Mach Number; 2- Wing; 3= Sheot..)
where U't is the axial perturbation velocity of the first wing component in the

(30b)

case of sources concentrated in z=t':

. nN—a X 3 ( [( =&l - a“(Tf
B &< At TRt T S PR A o
{ " = : K (NLLUSI 3B (L — (31)
3 . ? ) ( ﬁf"m
_auc(“l/(l¢3\l)cl t ‘\’\}—LQ,(argch “‘Y—& Al &"70) T
28(L + X b 2&(\’ ~7L)
' ad { -_— ‘
-—arg«hl“ /\)«lxnlo) ;ka,o'l-»-'f*
~w\+r.,. Iop g x?
> [ T
+ - Kjpare con | cld] - ‘:"’ = QrargchV(b’4~-’i!,.”+_’i"').
x b+ 8° t,', (l'—-x) (rs’ +2%) (148 b?)

Integrating (30a) on the real axis between the limits of ( O ,p, ) but
(30b) on the imaginary axis between (9,39), in the complex plane x, we obtain
the constant

Ty (32)

and also the equation - T ) 3 ,
V(b —w) (1l + ’")[K(k)-—;‘—"-“ﬁn(@:vk)]"'
— %o

1 +-B*? (33)
2 Y +b h*
L
where the module k and the parameters fG)/E of the complete elliptical
integrals which appear are
" W
k= Y1 — B, @, = - i Q= (34)

From the condition cof finite velocity at the subsonic edges of the sheets
(x-tib) we reduce
a,,=A4,,=0. 185
The constant 9, is calculated by us by determining Qt for the first time
from equation (31). Starting with equation

. t dv’ (36)
() 2 e ey
q () Vie e dt

10
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deduced from the theory of conical movements [1], and taking into consideration

the fact that q't taken from (11) can also be written thus in plane x,

q» t
ql(‘)— o= —;' T-B"')' : 37
we will write the equations:
TR A
vy — U, _____q__'.\ (l - B %) Vl YT (38a)
b ol

. ~ (38b)
v te+ 0’ :l —-S tdv ==vh,
fo t,
These equations were written by placing limiting conditions at points
t-tu and t-h for the lateral velocity v', as well as the condition of real
incidence . in order to obtain the mean incidence.

As a result of calculations, we deduce from (38a) and (38b) the equations:
g (h)1 =B G —1, )1 = B h*) == (vg —vy) h |1 - B 2,

(39a)
o ([T=5 0 T 5 8) =0 — ) BT B R (39b)
Next we introduce vy from (39b) and Q from (28a) and obtain the constant
q, 1n the following form: 71/771:[?: : [ ()—-—”!—’ﬂ p,,k)]a—ﬁ
g Sl O (40)
/= 9b (b* - wh) (1 -B%) b
% 2 k) — ——2— T1(0y, £
i )V i [K( o )|+
Vetsaaciamt N K L I 2 ]
e LR R T |

Equation (39a) was used to determine the velocity v, on the sheet. The
constant kt found in expression (23) is determined by beginning with an equation
similar to (38b) and writing the equation for measuring the normal velocities

on the sheets of the three component wings, which will have a mean slope equal

-y 1Y h L]
R —-vh=§ v'dtc::"t‘ & tdv®.
.0 0 .0 (41)
Equation (41), in consideration of (21), becomes
3B*A*(v —uvy) ==k, [1 - (1 —B2K%)32], (42)
which, united with (39a), determines the constant k 3
o R e l _f_ﬁ{{j_l‘ (43)
i 1»—(1—Bh'3“( I—B‘t)

11




4. Distribution of Pressure and Aerodynamic Properties

Calculation of the coefficient of pressure on the wing and sheet is made

by using the formula

(44)

In which the expressions for axial perturbation velocities Ua or Up. obtained

from equation (26), are introduced in turn (figure 5).
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Figure 5. Key: l-linear theory, 2-present theory

The coefficient of 1lift for both sheets or the wing is found by using formula [2]:

1 2 (.8
28 C:nm:""U:Sa U dy, (45)
12




for the wing region comprised by the interior of the Mach cone,

_1_(,_‘ _L) IR (1 i (46)

2 2

for the outside region

B

Cp= ——--—-" wpdz,
(47)

for the entire subsonic sheet and

1 1 1 1
?lccas?{’“?]CICC'*' E?C'm" (48)

for the entire horizontal wing.

The coefficient of moment of rolling is given by the following fﬂ'lulle;

HCpo= uu ( . ydy, (49)
where the horizontal plane and
8 L]
HCap =i i 22, (50)

for the vert:cal plane, in which Yia and ulp are given by (14) and (16).

In order to define the parameter fg we shall observe for the first time
that the position of maximum pressure :istribution coincides with that of the
center of the vortex core, as is found by experimentation. On the
other hand, by basing calculations on the distribution of selected SOUrces ye
find that the apex of depression on the sheet extrados falls approximately
in the center of gravity of the sou?ce intensity with position t'.given by (29b).

To continue we shall use the formula

{,
R : (51)

T+ 170 + ApE
to define the position of the center of the vortex core in which ,6 is the
Yoo!
sheet incidence while / is a supplementary incidencecreated by interference

between the wing and the sheet, proportional to Q. /(s a result, if A+ 0,

then Aé » 0.

5. The Simplified Case of Concentrated sources
Assuming in a simplified way that the normal velocity at the surface of a
sheet has a sudden jump into the center of a vortex core, equivalent to a

sudden incident Jump, we solve the problem from the hydrodynamic point of view

by placing several concentrated SOUrces 4 points t'o and -:'o of intensity Q,and -Q, -

13




The expressions of the axial perturbation velpqities will be as follows: U

. Ay . 20 (.. YO8l —8X)
M o I R A'°(“'°ml'" Y ITEE TR (52)
v ramg N2l — 8T
—arc COSV ‘l s “ “ -. \) )4« -2-0,(argch V;_i_’. - \.’,(_l, }'Tﬂ’_ .
28(L+X) n 28X — 1)
[0 +8X (1 +81)) ) VT»»M?
_arguhl e 7\)(( =3 ) = 4 Cy —b'{ '_*4 o
(@ b (1 —8 ) (a1 e )
.’( ar osv J-~- argch -
S S (14 B by (* —1?) S (i 2% (142 "
for a lifting cruciform wing, .
e 1 2 (148X (1 —&T) 53)
U= -~ Q,,argch —— + = Q,[ar chV - o
t="Qarge “+xo.( 2 e o

Sk (- f,&X)(l-o—.ﬁTn) o /14_'7515’_._—
B T T ) *Q""‘d'lh'(b '+ )

3 |
+ E Q. argch B (e 4-2)

for a wing of symmetric thickness, and (54)
aw =",
for the third component wing.
The pressure distribution is found by substituting in (45) its expression

U given by (26) in which U' U't’ and U'c come from (52), (53) and (54). The

1)

aerodynamic coefficients are feund ' in the same way as in the case of

distributed seurces in which constants .10, 10° Qt and kt appear, deduced
from equations
Ty (55a)
Volo+ v, (h—fo) = v h, (55b)
O i b L. 38 (55¢)
Vi—are
and from (33), and (42: TTrE
3 PRLL [ (0= =N 8 |a—b
My r(+BbY) I+ i (56a)
U- (b 12 B' H ]
l/(b 0)(l+ t )[ (k)_ ’b .zn(olgk]'—
ta 14 B*)* -~ T0
L) a4hre
bl 148
14
PTp—— H ———a




k3Rl B
Q  1—( —Bhyn

(56b)

in which k’/ol and{02 are taken from (34). The constant KIO is the same as
in (32).
Observations

a) The positions of the vortices are determined both from¢1and/g , as
is seen in (51).

a, £ o

b) If ﬂ-o, ; the antisymmetric flow with vortices is again
found.

c) Making Q10=0 in the expression of axial velocity U in the linear theory,

we get from the expression for calculated in [5], the condition

410
as an antisymmetric cruciform wing in order to have finite velocities at the

edge, avoiding the appearance of vortices:

e ariyy G7)

a
B 210+ b") K(k)— bl (g, k)]

From the same equation we deduce the supiementary incidence induced by the

wing on the sheet when/@ =0:
2 [ (F4b?) K (k) — b1 (o,, k)] = (58)
ol V(@ bY) (1 +57)

introduced in (51).
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